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SUMMARY

We use a one-dimensional model problem of advection–diffusion to investigate the treatment recently advocated
by Papanastasiou and colleagues to deal with boundary conditions at artificial outflow boundaries.

Using finite elements of degreep, we show that their treatment is equivalent to imposing the condition that the
(p� 1)st derivative of the dependent variable should vanish at a point close to the outflow. This is then shown to
lead to errors of ordero((h�1/Pe) p�1) in the numerical solutions (whereh is the maximum element size and
Pe is the global Peclet number), which is superior to the errors of ordero(hp� 1

� 1=Pe) obtained using a
standard no-flux outflow condition. These findings are verified by numerical experiments.
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1. A MODEL PROBLEM IN 1D

We consider the advection–diffusion problem

Tt � uTx � eTxx � S �1�

on the quarter-planef0 < x < 1; t > 0g, with given initial dataT �x; 0� � T0�x�; 0 < x < 1, and a
Dirichlet boundary condition (BC) atx� 0; without loss of generality we may takeT �0; t� � 0; t > 0.
We assume thatu�x; t� > 0 throughout the domain and thate is a positive constant.

For computational purposes it is necessary to restrict the length of the interval to some finite value
L, say. An artificial boundary condition has then to be imposed atx� L (in order to ensure that the
truncated problem has a unique solution) in such a way as to not significantly affect the solution in the
interior. If it is assumed that the source termS�x; t� and the initial dataT0�x� are such that
T �x; t� !constant asx !1 for each t > 0 and thatL is sufficiently large that the solution is
constant in space forL 4 x < 1, then one may impose the ‘no-flux’ condition

Tx � 0 at x � L: �2�

This has been the traditional approach. Its success depends not only onL being sufficiently large but
also on e being strictly positive so that any signal is damped as it is convected in the positive
x-direction.

Lohéac1 analyses the effect of imposing an outflow boundary condition on a multidimensional
form of equation (1) withS � 0. It is proved that a condition of the form

Tt � uTx � 0 at x � L �3�
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leads to an error (difference between the problems on the semi-infinite real line and the finite interval
[0, L]) of ordero�e2

� provided thatjuj > 0. (Our Lemma 1 withp� 1 proves a similar result in the
steady case.)

The use of extrapolation conditions of the form

@
jT

@x j
� 0 at x � L �4�

for the Navier–Stokes equations is described by Johansson2 and Nordstro¨m,3 the former
recommending the use ofj � 3 while the latter analyses the casej � 2.

We shall analyse a different approach that has recently been proposed by Papanastasiou and
colleagues4–6 specifically for finite element methods (FEMs). It differs from the methods described
above in that it does not seek to impose an outflow BC on the continuous problem but does so
implicitly within the discrete approximation of it.

To describe their approach, we require the weak form of equation (1) on the interval0 < x < L.
This is such thatT �x; t� must satisfy the infinite system of ordinary differential equations (ODEs)

�f; Tt� � �f; uTx� � e�fx;Tx� � �f; S� � efTxjx�L �5�

for all f 2 H1
�0;L� \ ff�0� � 0g, together with the given initial data and the boundary condition

T� 0 at x� 0.
If we impose the BC (2), then the boundary term on the right of (5) vanishes, so that

�f; Tt� � �f; uTx� � e�fx;Tx� � �f; S�; �6�

for which (2) is a natural BC.
In contrast with this, Papanastasiouet al. suggest that the weak form (5) should be left as it is and

that the boundary term should be treated as being unknown—this is termed in Reference 5 afree
boundary condition. It is our feeling that it should be referred to as the ‘no BC’ boundary conditionas
this more accurately describes the situation, since within a purely continuous setting (as opposed to
finite element approximations) the weak formulation (5) is invalid because it is equivalent to not
setting any BC atx� L and the governing equations (5) cannot therefore isolate a unique solution.
The aim of this paper is to describe the behaviour of finite element approximations of (5) and, in
particular, to ascertain what numerical BCs are implied by this weak form.

In the next section we describe the FE methods and this is followed in Section 3 by the derivation
of a boundary condition which is implied by the FE equations. It is shown that finite elements of
degreep lead to an outflow BC of the form (4) withj � p� 1, except that these hold at some point
within the last element rather than atx� L. The casep� 1 (linear elements) is also equivalent to (3).
We also show that for steady problems the new boundary condition leads to errors of ordero�ep�1

� at
the outflow when using finite elements of degreep. This contrasts with the errors of ordero�e� when
using the no-flux condition. These results are verified by a selection of steady and unsteady numerical
examples in Section 4.

In Section 5 we avoid the unorthodox implied boundary condition derived in Section 3 by
establishing the equivalence of the ‘no BC’ FE equations and the Galerkin FE approximation to a
problem with standard Dirichlet–Neumann-type BCs.

2. FE APPROXIMATION

Because there is substantial interest in thep-version as well as theh-version of the FEM, we shall
adopt an FE approximation using continuous piecewise polynomials of any degreep51. Our
conclusions will be independent of the exact nature of the basis functions employed, but for the sake
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of simplicity we assume it to be the classic nodal (or Lagrangian) basis. With the imposition of the
BC T �0; t� � 0 the dimension of the resulting space ispN. Thus, if we divide the interval0 < x < L
into N elements by the knots

0 � x0 < x1 < � � � < xN � L;

then each element hasp7 1 nodes in its interior and one node at each of its endpoints. The knots are
not required to be equally spaced and we define

h � max
i4j4N

�xj ÿ xjÿ1�; hN � xN ÿ xNÿ1:

Denoting the basis functions on this grid byff1;f2; . . . ;fpN g, then the FE approximationTh to T
takes the form

Th
�x; t� �

P
pN

j�1
Tj�t�fj�x�; �7�

whereTj denotes the value ofTh at thejth node. The FE approximation of (6) then leads to the set of
pN ODEs

�fj;Th
t � � �fj; uTh

x � � e�fjx
;Th

x � � �fj; S�; j � 1; 2; . . . ; pN : �8�

On the other hand, the weak form (5) leads to

�fj; Th
t � � �fj; uTh

x � � e�fjx
;Th

x � � �fj; S� � efjT
h
x jx�L; j � 1; 2; . . . ; pN : �9�

The discrete equations (8) and (9) differ only in the boundary term and consequently the ODEs they
generate differ only for the indexj � pN associated with nodes lying on the artificial boundaryx� L.
Defining l � p(N7 1), then the nodes in the last element arexl�1; xl�2; . . . ; xl�p and the
corresponding basis functionsfl�1;fl�2; . . . ;fl�p are polynomials (rather than piecewise
polynomials) on�xl;L�. Consequently, forj � l � 1; l � 2; . . . ; l � p, (9) is exactlyequivalent to

�L

xl

fj�T
h
t � uTh

x ÿ eTh
xx ÿ S�dx � 0; j � l � 1; l � 2; . . . ; l � p; �10�

which holds for all degreesp51. Note that (10) does not hold forj < l � 1.

3. AN IMPLIED BOUNDARY CONDITION

Before turning to finite elements of orderp, we look first at the simpler situations of linear (p� 1) and
quadratic (p� 2) elements.

Linear elements

Whenp� 1, we haveTh
xx � 0 for x 2 �xl;L� and so equations (9) give

�L

xl

fN �T
h
t � uTh

x ÿ S�dx � 0:

Furthermore, sincefN �x� > 0 for x 2 �xl;L�, we may apply the mean value theorem for integrals to
deduce that

Th
t � uTh

x � S �11�
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at some pointx 2 �xl;L�. Clearlyx! L ash ! 0, so that this may be taken as a form of BC in the
neighbourhood ofx� L. In generalx varies witht.

If S andu are both linear polynomials inx on the interval�xl;L�, the pointx may be identified,
since the residualR � Th

t � uTh
x ÿ S is then a linear polynomial inx (for eacht) which is orthogonal

to fN � �x ÿ xl�=hN on �xl; L�. Consequently,

R � a�t��x ÿ L � hN=3�

for some functiona�t�. Thus x � L ÿ hN=3 and the ‘no BC’ boundary condition implies the
satisfaction of the ‘reduced equation’ (11) at the fixed locationx � L ÿ hN=3. A similar observation
has been made by Heinrich and Vionnet,7 although they do not identify the pointx.

Quadratic elements

Whenp� 2, we haveTh
xx � constant forx 2 �xl;L� and (10) holds forj � l � 1; l � 2—there are

two discrete equations pertaining to the element�xl;L�. We shall assume thatu andSare polynomials
of degree one and two inx respectively on�xl;L� whose coefficients may depend ont.

SinceR is a polynomial of degree two inx that is orthogonal on�xl;L� to bothfl�1 andfl�2, it
must therefore be orthogonal to all polynomials of degree two that vanish at the left endpointx � xl

of the outflow element. It follows that

R � a�t��5X 2
ÿ 2X ÿ 1�; X � ÿ1 � 2

x ÿ xl

hN
;

wherea is some function oft alone (different from that in the linear case). Thus the residual must be
zero at the two pointsx � x1; x2 2 �xl;L�, where

x1;2 � xl � hN �1=5 �
p

6=10�:

In contrast with the linear case, these conditions do not provide BCs for the system but merely show
that the differential equation (1) is exactly satisfied at these points—the residual is collocated at
x � x1 andx � x2. However, using the facts that@R=@x � 0 at X � 1=5 andTh

xx � constant on�xl;L�,
it follows that

@

@x
�Th

t � uTh
x ÿ S�

�

�

�

�

x�x

� 0 �12�

at x � x � xl � 3hN=5. This condition is independent of the PDE (1) and may therefore be construed
as being the BC implied by (9).

An alternative derivation of a slightly weaker result may be given for the cases whereS is not
necessarily a quadratic polynomial or whereu is not linear inx. We begin by scaling the basic
functions to have ‘unit mass’:

^fj�x� � fj�x�

��L

0
fj�t�dt; j � l � 1; l � 2; �13�

then clearly the FE equations (8)–(10) continue to hold withfj replaced by^fj. Subtracting the two
resulting equations corresponding toj � l � 1; l � 2 from each other gives (usingTh

xx � constant on
�xl;L�)

�

^fl�1 ÿ
^fl�2; Th

t � uTh
x ÿ S� � 0: �14�

Definingc�x� �
� x

xl
�

^fl�1�t� ÿ ^fl�2�t��dt, then it is readily verified that

c�x� � 6X 2
�1 ÿ X �; X � �x ÿ xl�=hN :
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Thusc�xl� � c�L� � 0 and integrating (14) by parts leads to

c;
@

@x
�Th

t � uTh
x ÿ S�

� �

� 0: �15�

Furthermore, sincec�x� > 0 for x 2 �xl;L�, we may again apply the mean value theorem for integrals
to conclude that (12) holds. This argument does not identify the precise location ofx 2 �xl;L�, but if
we assume thatSandu are sufficiently smooth, it may be shown thatx � L ÿ 2hN=5 � o�h2

�, so that
the former result is essentially recovered.

General case

We return now to the case of finite elements of general degreep5 1 and establish the following
result.

Theorem 1

If Th is an FE function of the form (7) andR denotes the corresponding residual

R�x; t� � Th
t � uTh

x ÿ eTh
xx ÿ S; x 2 �xl;L�; �16�

then the ‘no BC’ FE equations (9) imply that for eacht > 0 there is a pointx 2 �xl;L� where

@
pÿ1

@x pÿ1
�Th

t � uTh
x ÿ S�

�

�

�

�

x�x

� 0: �17�

Furthermore, ifS is a polynomial inx of degree4 p and if u is a linear polynomial inx for x 2 �xl;L�
and for eacht > 0, then

(i) the BC (17) holds atx � L ÿ �p=�2p � 1��hN

(ii) the residual is zero at thep zerosfxkg of the Radau polynomial of degreep on �xl;L�. That is,
the finite element equations in the ‘outflow element’ imply

R�xk; t� � 0; k � 1; 2; . . . ; p; �18�

so that they are equivalent to collocation at the Radau points in this element.

Remarks

1. The assumption made in the second part of Theorem 1 thatS�x; t� be a polynomial inx of
degree not exceedingp in �xl;L� will be met if one adopts the common practice of projecting
the source terms onto the underlying finite element basis in order to facilitate the evaluation of
integrals.

2. With less restrictive conditions onS and u, e.g. that their�p � 1�st and second derivatives
respectively with respect tox be continuous forx 2 �xl; L�, one can show that the ‘boundary
condition’ (17) holds at

x � L ÿ
p

2p � 1
hN � o�h2

�:
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3. The Radau polynomialrp�x� of degreep on �xl; L� is defined by (see e.g. the book by Davis and
Rabinowitz8)

rp�x� �
Pp�1�X � � Pp�X �

1 � X
; X � ÿ1 � 2

x ÿ xl

hN
; x 2 �xl;L�;

wherePn�X � denotes thenth-degree Legendre polynomial forX 2 �ÿ1; 1�.
4. It is interesting to note that the pointx at which (17) holds and the collocation pointsfxkg are

stationary for all time (too�h2
� in the general case).

Proof of Theorem 1

The proof depends on the polynomial

c�x� � �1 � X �p�1 ÿ X � pÿ1
; �19�

where, here and throughout the proof,x andX are related by

X � ÿ1 � 2
x ÿ xl

hN
; �20�

a linear map fromx 2 �xl; L� to X 2 �ÿ1; 1�.
We first note that@�pÿ1�c=@x�pÿ1� is a polynomial of degreep that vanishes atx � xl�X � ÿ1�.

Consequently, there are coefficientsfa1; a2; . . . ; apg such that

@
pÿ1c

@x pÿ1
�x� �

P
p

j�1
ajfj�l�x�;

and by multiplying the� j ÿ l�th equation of (10) byaj and summing, we find that
�L

xl

@
p�1c

@x pÿ1
�Th

t � uTh
x ÿ eTh

xx ÿ S�dx � 0: �21�

We next note that the polynomials

c�x�;
@

k
c

@xk
�x�; k � 1; 2; . . . ; p ÿ 2;

all vanish at bothx � xl andx � L. Thus, when we integrate (21) by partsp ÿ 1 times, we obtain
�L

xl

c
@

pÿ1

@x pÿ1
�Th

t � uTh
x ÿ eTh

xx ÿ S�dx � 0:

Now, sinceTh is a polynomial of degreep, its �p � 1�st derivative is identically zero, so that this
reduces to

�L

xl

c
@

pÿ1

@x pÿ1
�Th

t � uTh
x ÿ S�dx � 0; �22�

and sincec�x� > 0 for x 2 �xl;L�, we invoke the mean value theorem for integrals to deduce that (17)
holds at some pointx 2 �xl;L�.

Whenu is a linear function andS is a polynomial of degreep, the second factor in the integrand of
(22) is a linear polynomial so we may express it in the form

@
pÿ1

@x pÿ1
�Th

t � uTh
x ÿ S� � A�B ÿ X �:
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Substituting this into (22), using the definition ofc and evaluating the resulting integrals gives

B �

�1

ÿ1
Xc�X �dX

��1

ÿ1
c�X �dX ;

so that

B �

p � 1
2p � 1

:

Thus we have a zero atX � B which, through (20), leads tox � L ÿ phN=�2p � 1� as required.
The proof of part (ii) of the theorem depends on the observation that the residualR is a polynomial

of degreep that, by (10), is orthogonal to all polynomials of degreep which vanish atx � xl (because
of this last condition, there is one less degree of freedom than would be required to ensure thatRwere
identically zero). Consequently,R must be a multiple of the Radau polynomial of degreep:8

R�x; t� � a�t�rp�x�; x 2 �xl;L�;

for some functiona�t�, and therefore (18) must hold. u

It follows from Theorem 1 that the ‘no BC’ finite element equations provide an approximation to
the non-standard problem consisting of (1) on the interval0 < x4x, a Dirichlet condition atx � 0
and the boundary condition

@
pÿ1

@x pÿ1
�Tt � uTx ÿ S� � 0 at x � x

for somex � x�h; t� 2 �xl;L�. Whenu andSare sufficiently smooth, the differential equation may be
used to simplify the boundary condition at the outflow and this leads to the initial boundary value
problem (IBVP)

Tt � uTx � eTxx � S; 0 < x4x;

T�0; t� � 0; t > 0;

@
p�1T

@x p�1
�x; t� � 0; t > 0:

�23�

Discrete versions of this outflow boundary condition have been discussed in the finite difference
literature on hyperbolic problems�e � 0�9,10 and also in the context of the Navier–Stokes
equations.2,3

We shall demonstrate through numerical experiments in Section 4 that the solutions of the ‘no BC’
finite element method do indeed converge to those of problem (23), so we may interpret the solutions
of (23) as describing the properties of equations (9). We therefore need to quantify how far the
solutions of (23) lie from those to the original problem posed on0 < x < 1. We shall consider this
issue in the next subsection.

3.1. Stationary problems

Our aim is to determine the difference between the solution to the problem

s
1

uTx � eTxx � S; 0 < x41;

T�0� � 0;
T�x� ! constant; x !1;

8

<

:

�24�
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denoted byT1, and that of

s
x

uTx � eTxx � S; 0 < x4x;

T�0� � 0;

@
kT

@xk
�x� � 0;

8

>
>
>
<

>
>
>
:

�25�

which we denote byTx. If u is constant, then the general solution ofuTx � eTxx � S satisfying
T �0� � 0 is given by

T �x� � A�eux=e
ÿ 1� �

1
u

�x

0
S�s�ds ÿ

1
u

�x

0
eu�xÿs�=eS�s�ds �26�

for any constantA.
If eÿux=e

� x
0 S�x�ds ! 0 as x !1, then T �x� !constant if the constantA is chosen such that

A � A
1

, where

A
1

�

�
1

0
eÿus=eS�s�ds:

This together with (26) definesT1.
The differencee � T1

ÿ Tx satisfies the homogeneous differential equationÿee00 � ue0 � 0 with
e�0� � 0 anddke=dxk

� dkT1

=dxk at x � x. Consequently,

e�x� �
e

u

� �k dkT1

dxk
�x��eu�xÿx�=e

ÿ eux=e
�

for 04 x4x. It is readily shown that

dkT1

dxk
�x� �

1
x

�
1

x

eu�xÿs�=e dkÿ1S

dskÿ1
�s�ds:

These results lead to the following lemma.

Lemma 1

If u is constant andSand its firstk ÿ 1 derivatives are continuous and bounded on�0;1�, then the
solutions to problemss1 andsx differ by

T1

�x� ÿ Tx
�x� �

1
u

e

u

� �kÿ1
�
1

0
eÿus=e dkÿ1S

dskÿ1
�s � x�ds�eÿu�xÿx�=e

ÿ eÿux=e
� �27�

for 04 x4x. Thus

max
04x4x

jT1

�x� ÿ Tx
�x�j4

1
u

e

u

� �k
max

x4x41

dkÿ1S

dxkÿ1
�x�

�

�

�

�

�

�

�

�

�

�

�28�

and the maximum of the left-hand side is achieved atx � x.

Remarks

1. The smoothness requirements on the source termS may be weakened (except in the
neighbourhood ofx � x) at the expense of introducing additional exponentially small terms into
the right sides of (27) and (28).
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2. The requirement ofu being constant may be relaxed (subject tou�x� > 0� at the expense of
introducing more complex integrating factors. The results given are valid only ifu 6� 0, so that
some element of convection is essential in the problem.

3. The most significant conclusion is that the higher the order of derivative boundary condition
imposed atx � x, the closer the solutionsT1 andTx lie to each other. If the no-flux condition
(2) is imposed, we havex � L; k � 1 and a difference ofo�e�, but with linear�k � p � 1 � 2�
and quadratic�k � p � 1 � 3� elements in the ‘no BC’ formulation we get differences ofo�e2

�

ando�e3
� respectively (the first of these may be deduced as a special case of the results of

Lohéac1). Moreover, the last factor on the right of (27) represents a term that is exponentially
small outside a boundary layer of widtho�e� at x � x; any differences are therefore confined to
this layer.

4. If the time-dependent problem (23) achieves a steady state ast !1, then the results of
Lemma 1 also hold in that case for large times.

4. NUMERICAL RESULTS

We present three examples designed to confirm the results of the preceding sections.

Example 1. Steady problem

We chooseu � 1 and consider the problems1 with

S�x� �
sin�x�; 04x4p;

0; p < x < 1:

�

The solutionsT1 are shown inFigure 1for e � 0�1 (broken line) ande � 0�01 (full line).
We solve the problem on the truncated domain withL � 1 using both the no-flux formulation (8)

and the ‘no BC’ formulation (9) with linear and quadratic elements. The choices ofL andu may be
compensated for by rescalingx, e andS. In all cases we usee � 1; 0�1; 0�01; 0:�001 and a uniform
grid in space withh � 2ÿj

; j � 2; 3; . . . ; 10. The computations were carried out in Matlab on a Sun
SPARCstation LX.

The solutions for linear elements withh� 1=32 are shown inFigure 2: (a) e� 1, (b) e� 0�1, (c)
e� 0�01 and (d)e� 0�001. The full line denotes the solutionT1, the crosses denote the solution using
‘no BC’ at x � 1 and the circles denote the solution using the no-flux boundary condition (2). The ‘no
BC’ condition is seen to be effective even at very large values of the diffusion coefficient and is
generally superior to the no-flux condition.

Figure 1. SolutionT1 to Example 1 withe � 0�1 (broken line) ande � 0�01 (full line). The vertical dotted line shows the
location of the fictitious boundary
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Each part ofFigure 3shows a log–log plot of the difference between a reference solution and a
computed solution (evaluated atx � 1 ÿ h) as a function ofh for e � 1 (crosses),e � 0�1 (circles),
e � 0�01 (asterisks) ande � 0�001 (full line). In Figure 3(a) we showT1

ÿ Th
noflux, whereTh

noflux is
determined using equations (8). It is clear that ash ! 0 the difference is proportional toe, in
accordance with Lemma 1 withk � 1. Figure 3(b) shows the differenceT1

ÿ Th
nobc between the

exact solution to the problem on the unbounded domain and that produced by the linear ‘no BC’
formulation. For small values ofe the difference behaves aso�h2

� but asymptotes ash ! 0 to a value
proportional too�e2

�, again in accordance with Lemma 1, this time withk � p � 1 � 2.
Figures 3(c) and 3(d) compare the difference betweenTh

nobc and Tx, where, from Theorem 1,
x � 1 ÿ h=3. In Figure 3(c) the difference tends to zero withh, but the rate of convergence, although
close to two for larger values ofh, ultimately diminishes too�h�. It is seen in Theorem 1 that the
precise location ofx is only known whenS has the same degree as the underlying FE space.
Accordingly, we also compute the ‘no BC’ FEM withS replaced by its interpolantSh defined by

Sh
�x� �

P
N

j�0
S�xj�fj�x�:

The resulting differenceTx
ÿ Th

nobc is shown in Figure 3(d) and is seen to converge optimally at
o�h2

�.
The results of exactly analogous computations using quadratic finite elements are shown inFigure

4. They are again in agreement with the results of Theorem 1 (withp � 2; x � 1 ÿ 2h=5� and Lemma
1 with k � p � 1 � 3.

Figure 2. T1 (full line), Th
noflux (circles) andTh

nobc (crosses) for Example 1 withh � 1=32 and (a) e � 1, (b) e � 0�1,
(c) e � 0�01, (d) e � 0�001
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Figure 3. Example 1 with linear elements: (a)T1

ÿ Th
noflux, (b) T1

ÿ Th
nobc, (c) Tx

ÿ Th
nobc and (d)Tx

ÿ Th
nobc (with source term

interpolated) ash varies. Key: crosses,e � 1; circles,e � 0�1; asterisks,e � 0�01;full line, e � 0�001

Figure 4. As for Figure 3 but using quadratic elements
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Example 2. Unsteady problem

This example is designed to test the assertion that the solutions of the ‘no BC’ equations (9)
converge to those of the IBVP (23) ash ! 0. We choose initial data so as to give an exact solution of
equations (23) withL � 1; u � 1 and S � 0. The initial data are dependent on the degreep, the
locationx � 1 ÿ ph=�2p � 1� and, consequently, onh. The exact solution is chosen as

T �x; t� �
2
e

e�xÿ1�=2e P

j�1;2
�ÿ1� jÿ1 sin�gjx�

sin�gj�
eÿ�1ÿ4g2

j et�=4e
; �29�

which satisfiesT�0; t� � 0;T �1; 0� � 0 and also the boundary condition@ p�1T=@x p�1
� 0 at x � x if

g1 andg2 are roots of

�1 ÿ 4e2
g

2
� sin�gx� � 4eg cos�gx� � 0; x � 1 ÿ h=3; p � 1; �30�

�1 ÿ 12e2
g

2
� sin�gx� � 2eg�3 ÿ 4e2

g
2
� cos�gx� � 0; x � 1 ÿ 2h=5; p � 2: �31�

We choose the two smallest positive roots of these equations. The solutions are shown inFigure 5
for p � 1; h � 1=64 ande � 0�1 (left) ande � 0�1 (right). The presence of a boundary layer atx � 1
is evident fore � 0�01. The solutions have a qualitatively similar form forp � 2.

The solution (29) defines initial data

T0�x� �
2
e

e�xÿ1�=2e P

j�1;2
�ÿ1�jÿ1 sin�gjx�

sin�gj�

for 0 < x < 1, and by extending this to be zero outside the interval, we may construct a solution of (1)
on the entire real line by

T1

�x; t� �
1

p

�4pet�

�1

0
T0�s�e

ÿ�xÿsÿt�2=4etds:

when e is small, T1

�0; t� is exponentially small and so this expression is sufficiently close to the
solution that satisfiesT�0; t� � 0.

In the numerical results that we present, the time integration of equations (9) has been
accomplished using a Matlab code based on variable order, variable step, backward differentiation
formulae and controls the level of local errors in time to a user-specified tolerance. We have used a
tolerance of 1077 in our computations.

Figure 6shows the solutions using linear elements att � e with h � 1=64 and (a)e � 0�1 and (b)
e � 0�01 (only the solution in the interval0�754 x4 1 is shown). The circles denote the solution
Th

noflux, the crosses denoteTh
nobc, the full line denotesT given by (29) and the dotted line denotesT1.

There is very close agreement betweenTh
nobc and T in both cases, whereas there is a notable

discrepancy betweenTh
noflux and bothT andT1.

Figure 5. Example 2: Exact solutions of IBVP (23) withp � 1; h � 1=64 ande � 0�1 (left) ande � 0�01 (right)
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The corresponding results for quadratic elements are shown inFigure 7. The conclusions to be
drawn are the same as for linear elements.

Quantitative measures of the differencesT1

ÿ Th
noflux; T1

ÿ Th
nobc andT ÿ Th

nobc as functions ofh
are presented inFigure 8(Linear) andFigure 9(quadratic). Results are given fore � 0�1 (circles) and
e � 0�01 (crosses). It is seen that bothT1

ÿ Th
noflux (Figures 8(a) and 9(a)) andT1

ÿ Th
nobc (Figures

8(b) and 9(b) behave aso�e� ash ! 0 whereasT ÿ Th
nobc (Figure 8(c) and 9(c)) behaves aso�h2

� for
both linear and quadratic elements, suggesting that the solutions of the ‘no BC’ FE equations do
indeed converge to those of (23).

This example does not properly reflect the ability of the various FE methods to approximateT1

because of the boundary layer in the neighbourhood ofx � 1. We therefore include one further
example which does not contain any such layers.

Example 3. Convection of a Gaussian

We require a smooth exact solutionT1 on 0 < x < 1 and this is taken to be

T1

�x; t� �
1

p

�4pe�t � t0��
eÿ�xÿx0ÿt�2=4e�t�t0�

with t0 � 0�1 and two choices ofe andx0. For e � 0�1 we takex0 � 0�5 and integrate over0 < t < 1,
whereas fore � 0�01 we takex0 � 0�75 and integrate over0 < t < 0�4. These have been chosen so
that the major features of the solution are convected out of the domain in the specified time intervals.
The solutions are shown inFigure 10with e � 0�1 (left) and e � 0�01 (right).

Figure 6. Example 2: solutions using linear elements att � e with h � 1=64 and (a)e � 0�1 and (b)e � 0�01 (only solution in
interval 0�754 x4 1 is shown). Key; circles,Th

noflux; crosses,Th
nobc; full line, T; dotted line,T1

Figure 7. As for Figure 6 but using quadratic elements
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The grids have usedh � 1=32 for linear elements andh � 1=16 for quadratic elements (so that
both systems have the same number of degrees of freedom). Reducing the size ofh in both cases
leads to virtually identical results (to graphical accuracy), since the dominant factor in the error is the
value ofe.

The solutions at the outflow boundaryx � 1 for linear elements are shown inFigure 11(a) for
e � 0�1 and Figure 11(b) fore � 0�01. Th circles, crosses and full line denote the solutions
Th

noflux;Th
nobc andT1 respectively. For both values ofe the ‘no BC’ formulation is clearly superior to

the no-flux boundary conditions.
The corresponding results for quadratic elements are shown inFigure 12. The magnitude of the

errors inTh
noflux is comparable with that for linear elements in each case. The ‘no BC’ formulation

shows a marginal improvement over the use of linear elements.

Figure 8. Example 2 with linear elements: (a)T1

ÿ Th
noflux, (b) T1

ÿ Th
nobc and (c)T ÿ Th

nobc againsth for e � 0�1 (crosses) and
e � 0�01 (circles)

Figure 9. As for Figure 8 but using quadratic elements

Figure 10. Example 3: exact solutions withe � 0�1 (left) ande � 0�01 (right)
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5. AN EQUIVALENT DIRICHLET–NEUMANN PROBLEM

It was shown in Section 3 that the ‘no BC’ finite element equations (9) approximate the IBVP (23) in
which there features a boundary condition involving the�p � 1�st derivative ofT. This leads to a non-
standard problem for which no theory has been developed regarding either convergence or, in steady
cases, whether the linear equations they generate are non-singular. We shall show that this difficulty
may be partially circumvented by relating the ‘no BC’ finite element equations to the standard
Galerkin FE approximation of a more standard problem. The process will be sketched for FE spaces
of arbitrary degreep and details given for the casesp� 1 and 2.

We begin with some preliminary results that will enable us to determine a combination of test
functions to replacefpN in (9) so that the ‘no BC’ equations may be reorganized to resemble those
for a Dirichlet–Neumann problem. For eachp let C denote a polynomial of degree 2p (which we
shall specify below) and define

c�x� �
d p
C

dxp
�x�: �32�

Then, if V h
�

P

1
pN V h

j fj�x� denotes an arbitrary finite element function, it may be shown by
integrating by parts that

�L

xt

c�ÿeV h
xx � uV h

x �dx � u
@

pÿ1
C

@x pÿ1
V h

x

�

�

�

�

L

x�xl

ÿ

P
p

j�2
�ÿ1� j @

jV h

@x j
e
@

pÿj�1
C

@x pÿj�1
� u

@
pÿj
C

@x pÿj

� ��

�

�

�

L

x�xt

:

Figure 11. Example 3: solutions using linear element atx � 1 with h � 1=32 and (a)e � 0�1 and (b)e � 0�01. Key: circles,
Th

noflux; crosses,Th
nobc; full line, T1

Figure 12. As for Figure 11 but using quadratic elements
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We now impose the2p � 1 interpolation conditions

dj
C

dx j
�xl� � 0; j � 0; 1; . . . ; p;

d pÿj
C

dx pÿj
�L� � �ÿ1�j�1 e

u

� �j
; j � 1; 2; . . . ; p;

which uniquely defineC�x�, and we obtain

�L

xl

c�ÿeV h
xx � uV h

x �dx � eV h
x �L�: �33�

Moreover, sincec�x� is a polynomial of degreep on �xl; L� with c�xl� � 0, there are coefficientsfajg

such that

c�x� �
P
p

j�1
ajfj�l�x�;

a linear combination of the FE basis functionsffjg whose support is restricted to the outflow element
�xl;L�.

The essential features are contained in the steady case and so we set all time derivatives to zero—
we will subsequently return to the unsteady case. Multiplying thejth equation of (10) byaj, summing
over j and adding the result to the last equation of (10), we obtain, sincep � l � pN ,

�L

xl

�fpN � c��uTh
x ÿ eTh

xx ÿ S�dx � 0:

Reorganizing this and using (33) withV h
� Th, we find

�L

sl

fpN �uTh
x ÿ eTh

xx ÿ S�dx � eTh
x �L� �

�L

xl

cSds:

We now integrate the second-derivative term by parts and usefpN �L� � 1 to give

�L

xl

�fpN uTh
x � efpNx

Th
x ÿ fpN S�dx �

�L

xl

cSds: �34�

Sincefj�L� � 0; j � 1; 2; . . . ; pN ÿ 1, we have now shown that the steady ‘no BC’ finite element
equations (9) are equivalent to

�fj; uTh
x � � e�fjx

;Th
x � � �fj; S�; j � 1; 2; . . . ; pN ÿ 1;

�fj; uTh
x � � e�fjx

;Th
x � � �fj; S� �

�L

xl

cSds; j � pN :

This is the standard Galerkin FE approximation of the Dirichlet–Neumann problem

ÿeTxx � uTx � S; 0 < x < L;

T�0� � 0;

uTx�L� � a;

�35�
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where

a �
u

e

�L

xl

cSds

clearly depends onh.
For linear elements it is readily shown thatc � 2e�x ÿ xl�=uh2

N and, by Taylor expansions,

a � S�L� ÿ �hN=3�Sx�L� � o�h
2
�

� S�L ÿ hN=3� � o�h2
�;

which is independent ofe. For quadratic elements we find

c�x� � 6
x ÿ xl

hN

e

uhN
2

x ÿ xl

hN
ÿ 1

� �

�

e2

u2h2
N

3
x ÿ xl

hN
ÿ 4

� �� �

and

a � S�L� �
e

u
Sx�L� � o�h

2
� eh�;

whereas for finite elements of degreep it may be shown that

a � S�L� �
e

u
Sx�L� � � � � �

e

u

� �

pÿ1 @
pÿ1S

@x pÿ1
�L� � o�h p

� eh pÿ1
� � � � � e

pÿ1h�: �36�

In order to relate the implied boundary conditionuTx � a to the solution of the original problem on
the semi-infinite real line, we note that the exact solutionT1 satisfies the differential equation

T1

x ÿ

e

u
T1

xx �

1
u

S

on 0 < x < 1 and multiplying both sides by the differential operator

1 �
e

u

@

@x
� � � � �

e

u

� �

pÿ1 @
pÿ1

@x pÿ1
;

we find that

uT1

x �L� � S�L� � � � �

e

u

� �

pÿ1 @
pÿ1S

@x pÿ1
�L� � u

e

u

� �p@ p�1T1

@x p�1
�L� �37�

provided thatS is sufficiently smooth. Thus, in the limith ! 0,

uT1

x �L� � a� u
e

u

� �p@ p�1T1

@x p�1
�L�;

so that the BCuTx�L� � a is equivalent, in this limit, to the BC@ p�1T=@x p�1
� 0 used in (23) (see

also (4) withj � p � 1).
It now follows that the differencee � T1

ÿ T , whereT is a solution of (35), satisfies

ÿeexx � uex � 0; 0 < x < L

e�0� � 0;

uex�L� � d;

whered � o��e� h�p�. By the same reasoning that led to Lemma 1, we may conclude that

T1

ÿ T � o�e�e� h�p�:
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The standard Galerkin method will, subject to smoothness of the data, generate a numerical solution
Th that is withino�h p�1

� of T. Consequently,

T1

ÿ Th
� o�e�e� h�p � h p�1

�: �38�

The error is thereforeo�h p�1
� whene� h ando�e p�1

� whenh � e, which is exactly the behaviour
found in Example 1 (see Figures 3 and 4).

The same construction applies to unsteady problems and may be shown to lead to the IBVP

Tt � uTx � eTxx � S; 0 < x < L;

T�0; t� � 0;

uTx�L; t� � a;

where

a �
u

e

�L

xl

c�S ÿ Tt�ds

andc retains its earlier definition. To reduce the amount of detail, we assume thatS is a polynomial
of degreep in x (or that it is interpolated into the finite element basis) and discuss the casesp � 1 and
2.

For p � 1 it may be shown that the BCuTx�L; t� � a may be written as

Tt � uTx � S ÿ 1
3 hN �Sx ÿ Txt�

at x � L, so that ash ! 0 we obtain the conditionTt � uTx � S (cf (3)), which is equivalent to
settingTxx�L; t� � 0.

For p � 2 the corresponding BC is

Tt � uTx � S ÿ
e

u
�Sx ÿ Txt� ÿ

1
20 h2

N �Sxx ÿ Txxt�: �39�

By differentiating (1) and eliminatingTxx, it may be shown thatT1 satisfies

T1

t � uT1

x � S ÿ
e

u
�Sx ÿ T1

xt � ÿ u
e

u

� �2
T1

xxx

and we see that in the limith ! 0 the implied BC (39) for quadratic elements is equivalent to setting
Txxx�L; t� � 0.

A similar approach may be adopted forp > 2 to show that the ‘no BC’ finite element equations
converge to the Galerkin finite element approximation of (1) on0 < x < L with the ‘extrapolation’
boundary condition@ p�1T=@x p�1

� 0 at x � L.
We believe that the arguments used in this section may be extended to higher dimensions and this

will be reported on in a future paper.
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