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SUMMARY

We use a one-dimensional model problem of advection—diffusion to investigate the treatment recently advocated
by Papanastasiou and colleagues to deal with boundary conditions at artificial outflow boundaries.

Using finite elements of degrge we show that their treatment is equivalent to imposing the condition that the
(p+ 1)st derivative of the dependent variable should vanish at a point close to the outflow. This is then shown to
lead to errors of ordef((h+ 1/P€) P*1) in the numerical solutions (wheteis the maximum element size and
Pe is the global Peclet number), which is superior to the errors of ofef "+ 1/Pe) obtained using a
standard no-flux outflow condition. These findings are verified by numerical experiments.
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1. A MODEL PROBLEM IN 1D
We consider the advection—diffusion problem
T, +uT, =¢T,  +S (@)

on the quarter-plan€d < x < oo, t > 0}, with given initial dataT (x,0) = Ty(x),0 < x < 0o, and a
Dirichlet boundary condition (BC) at= 0; without loss of generality we may take€0,t) = 0,t > 0.
We assume thai(x, t) > 0 throughout the domain and thais a positive constant.

For computational purposes it is necessary to restrict the length of the interval to some finite value
L, say. An artificial boundary condition has then to be imposex-at. (in order to ensure that the
truncated problem has a unique solution) in such a way as to not significantly affect the solution in the
interior. If it is assumed that the source telax,t) and the initial dataT,(x) are such that
T(x,t) —>constant ax — oo for eacht > 0 and thatL is sufficiently large that the solution is
constant in space fdr < x < oo, then one may impose the ‘no-flux’ condition

T,=0 atx=L. 2

This has been the traditional approach. Its success depends not dnlyeimg sufficiently large but
also one¢ being strictly positive so that any signal is damped as it is convected in the positive
x-direction.

Loheac' analyses the effect of imposing an outflow boundary condition on a multidimensional
form of equation (1) withS = 0. It is proved that a condition of the form

T,+uT,=0 atx=L 3
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leads to an error (difference between the problems on the semi-infinite real line and the finite interval
[0, L]) of order ¢(¢?) provided thatju| > 0. (Our Lemma 1 withp=1 proves a similar result in the
steady case.)

The use of extrapolation conditions of the form

T

8xi_0 atx=1L 4)
for the Navier-Stokes equations is described by JohahAssma Nordstta,® the former
recommending the use p& 3 while the latter analyses the cgse 2.

We shall analyse a different approach that has recently been proposed by Papanastasiou and
colleague$ ° specifically for finite element methods (FEMSs). It differs from the methods described
above in that it does not seek to impose an outflow BC on the continuous problem but does so
implicitly within the discrete approximation of it.

To describe their approach, we require the weak form of equation (1) on the inferval< L.

This is such thaf (x, t) must satisfy the infinite system of ordinary differential equations (ODES)

(0. To) + (¢, UTy) + &y Ty) = (. S) + £ Tylx. ®)

for all ¢ € H(0, L) N {¢(0) = 0}, together with the given initial data and the boundary condition
T=0atx=0.
If we impose the BC (2), then the boundary term on the right of (5) vanishes, so that

(¢, T) + (P, UTy) + &y, TY) = (9, 9), (6)

for which (2) is a natural BC.

In contrast with this, Papanastasieual. suggest that the weak form (5) should be left as it is and
that the boundary term should be treated as being unknown—this is termed in Refereffime5 a
boundary conditionlt is our feeling that it should be referred to as the BC’ boundary conditioms
this more accurately describes the situation, since within a purely continuous setting (as opposed to
finite element approximations) the weak formulation (5) is invalid because it is equivalent to not
setting any BC ak=L and the governing equations (5) cannot therefore isolate a unique solution.
The aim of this paper is to describe the behaviour of finite element approximations of (5) and, in
particular, to ascertain what numerical BCs are implied by this weak form.

In the next section we describe the FE methods and this is followed in Section 3 by the derivation
of a boundary condition which is implied by the FE equations. It is shown that finite elements of
degreep lead to an outflow BC of the form (4) with=p+ 1, except that these hold at some point
within the last element rather thanxat- L. The casep =1 (linear elements) is also equivalent to (3).

We also show that for steady problems the new boundary condition leads to errors af @Pdéy at

the outflow when using finite elements of degpedhis contrasts with the errors of ordé¢:) when

using the no-flux condition. These results are verified by a selection of steady and unsteady numerical
examples in Section 4.

In Section 5 we avoid the unorthodox implied boundary condition derived in Section 3 by
establishing the equivalence of the ‘no BC’' FE equations and the Galerkin FE approximation to a
problem with standard Dirichlet-Neumann-type BCs.

2. FE APPROXIMATION

Because there is substantial interest in pieersion as well as thb-version of the FEM, we shall
adopt an FE approximation using continuous piecewise polynomials of any dpgrée Our
conclusions will be independent of the exact nature of the basis functions employed, but for the sake
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of simplicity we assume it to be the classic nodal (or Lagrangian) basis. With the imposition of the
BC T(0, t) = 0 the dimension of the resulting spacepis. Thus, if we divide the intervad < x < L
into N elements by the knots

OZXO<X1<"'<XN=L,

then each element has— 1 nodes in its interior and one node at each of its endpoints. The knots are
not required to be equally spaced and we define

h= max (X; — Xi_1), hy =Xy — Xn_1.
ingN( j ]—l) N N N-1

Denoting the basis functions on this grid by, ¢,, ..., ¢y}, then the FE approximatiom” to T
takes the form

pN
T, 1) = Zl Ti(O¢;(%), (N
J:

whereT; denotes the value af" at thejth node. The FE approximation of (6) then leads to the set of
pN ODEs

(@, T + (&), UT) + &y, T = (¢5,8),  i=1,2,...,pN. ®)
On the other hand, the weak form (5) leads to
(5 TO) + (5. UT) + (). T = (0. 9) + e Tehor, J=1.2,...,pN. )

The discrete equations (8) and (9) differ only in the boundary term and consequently the ODEs they
generate differ only for the indgx= pN associated with nodes lying on the artificial boundasyL.

Defining I=p(N — 1), then the nodes in the last element afg;,X,,...,%;, and the
corresponding basis function®, ., ¢, ..., ¢, are polynomials (rather than piecewise
polynomials) on(x;, L). Consequently, fof =1+ 1,1+2,...,1+p, (9) is exactlyequivalent to
L
J G(TY +uTy — €Ty —S)dx =0, j=1+11+2 ... 1+p, (10)

X

which holds for all degreep>1. Note that (10) does not hold fgr< | + 1.

3. AN IMPLIED BOUNDARY CONDITION
Before turning to finite elements of ordgrwe look first at the simpler situations of linear=¢ 1) and
quadratic p=2) elements.
Linear elements
Whenp=1, we haveT}, = 0 for x € (x,, L) and so equations (9) give
L
J o (T8 +uTl — S)dx = 0.
X

Furthermore, since (x) > 0 for x € (x, L), we may apply the mean value theorem for integrals to
deduce that

T +uTi =5 (11)
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at some point € (x, L). Clearly¢ — L ash — 0, so that this may be taken as a form of BC in the
neighbourhood ok=L. In generalé varies witht.

If Sandu are both linear polynomials ir on the interval(x,, L), the pointé may be identified,
since the residu@® = T{" + uT' — S is then a linear polynomial im (for eacht) which is orthogonal
to ¢y = (X —x))/hy on (x;, L). Consequently,

R = a(t)(x — L + hy/3)

for some functiona(t). Thus ¢ =L —hy/3 and the ‘no BC’ boundary condition implies the
satisfaction of the ‘reduced equation’ (11) at the fixed locatieaL — hy /3. A similar observation
has been made by Heinrich and VionAetithough they do not identify the poift

Quadratic elements

Whenp=2, we haveT}, = constant forx € (x;, L) and (10) holds foj = | + 1, | + 2—there are
two discrete equations pertaining to the elen{@pt.). We shall assume thatandSare polynomials
of degree one and two ix respectively onx;, L) whose coefficients may depend btn
SinceR is a polynomial of degree two ir that is orthogonal ofix, L) to both¢, ; and¢,,,, it
must therefore be orthogonal to all polynomials of degree two that vanish at the left endpoit
of the outflow element. It follows that
X=X
hy
wherea is some function of alone (different from that in the linear case). Thus the residual must be
zero at the two pointg = &, &, € (X, L), where

&1 =X +hy(1/5 £ (/6/10).

In contrast with the linear case, these conditions do not provide BCs for the system but merely show
that the differential equation (1) is exactly satisfied at these points—the residual is collocated at
x = ¢; andx = &,. However, using the facts thaR/dx = 0 atX = 1/5 andT/, = constant orix,, L),

it follows that

R=a(t)(5X?> —2X —1), X =—-1+2

9
&(T{‘ +uTf —S) =0 (12)

x=¢

atx = & = x; + 3hy /5. This condition is independent of the PDE (1) and may therefore be construed
as being the BC implied by (9).

An alternative derivation of a slightly weaker result may be given for the cases v@isreot
necessarily a quadratic polynomial or wherds not linear inx. We begin by scaling the basic
functions to have ‘unit mass’:

R L
b)) = ¢;(X)/ JO Pidt,  j=1+1,1+2; (13)

then clearly the FE equations (8)—(10) continue to hold witlieplaced by<2>j. Subtracting the two
resulting equations correspondingjte: | + 1, | 4 2 from each other gives (usinff, = constant on

(x, L))
(D111 — Doz, T+ T —8) = 0. (14)
Defining y/(x) = [ (141(t) — dy,,(D)elt, then it is readily verified that
Y(x) =6X2(1—X), X =(x—x)/hy.
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Thusy(x)) = ¥(L) = 0 and integrating (14) by parts leads to
(w, %(T{‘ +uTy — S)) =0. (15)

Furthermore, sincég(x) > 0 for x € (x;, L), we may again apply the mean value theorem for integrals
to conclude that (12) holds. This argument does not identify the precise locatioa 64, L), but if

we assume tha®andu are sufficiently smooth, it may be shown tiiat= L — 2hy /5 + ¢(h?), so that

the former result is essentially recovered.

General case

We return now to the case of finite elements of general degeed and establish the following
result.

Theorem 1

If T"is an FE function of the form (7) an@ denotes the corresponding residual
R, t) =T +uT! —¢Th —S, xe(x,L), (16)
then the ‘no BC’ FE equations (9) imply that for eachk 0 there is a poin€ € (x, L) where

P sy —o 17)
ax p_l t X X:é .

Furthermore, ifSis a polynomial inx of degree< p and ifuis a linear polynomial i for x € (x;, L)
and for eaclt > 0, then

(i) the BC (17) holds at =L — [p/(2p + 1)]hy
(i) the residual is zero at the zeros{&, } of the Radau polynomial of degrgeon (x;, L). That is,
the finite element equations in the ‘outflow element’ imply

RE.D=0, k=1,2,....p, (18)

so that they are equivalent to collocation at the Radau points in this element.

Remarks

1. The assumption made in the second part of Theorem 1Sitat) be a polynomial inx of
degree not exceedingin (x;, L) will be met if one adopts the common practice of projecting
the source terms onto the underlying finite element basis in order to facilitate the evaluation of
integrals.

2. With less restrictive conditions o8 and u, e.g. that their(p + 1)st and second derivatives
respectively with respect to be continuous fox € (x;, L), one can show that the ‘boundary
condition’ (17) holds at

p

— = N(h2
E=Lm g g M+ )
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3. The Radau polynomiay,(x) of degreep on (x;, L) is defined by (see e.g. the book by Davis and
Rabinowit?)

r(X) = Ppi1(X) + Pp(X)

X — X
X=-1+2 L
1 + X 3 + hN 3 X € (Xl’ )1
whereP,(X) denotes thenth-degree Legendre polynomial fafr € (-1, 1).
4. It is interesting to note that the poiéitat which (17) holds and the collocation poiritg} are
stationary for all time (ta¥(h?) in the general case).

Proof of Theorem 1

The proof depends on the polynomial

YOO = (L +X)PL—-X)P, (19)
where, here and throughout the proefand X are related by
X =—1425=% (20)
hy

a linear map fronx € (x|, L) to X € (-1, 1).
We first note that®Py/axP~ is a polynomial of degre@ that vanishes at = x,(X = —1).
Consequently, there are coefficierfts, a,, ..., a,} such that
Py
oxp-1

P
(x) = X; aj¢j11 (%),

J:
and by multiplying the( j — I)th equation of (10) by, and summing, we find that

Larthy h h
J 2 (T8 UT) — e, — S)dk =0, 1)
X

We next note that the polynomials

ak
W(X)ﬂ W(X)ﬂ k:1727'~-7p_2’

all vanish at bothx = x;, andx = L. Thus, when we integrate (21) by paps- 1 times, we obtain

oot h h
JXI lﬁ W(Tt + UTX — ‘gTXX — S)dX =0.
Now, sinceT" is a polynomial of degree, its (p + 1)st derivative is identically zero, so that this

reduces to
ot h
X

and since/(x) > 0 for x € (x;, L), we invoke the mean value theorem for integrals to deduce that (17)
holds at some poinf € (x, L).
Whenu is a linear function an&is a polynomial of degrep, the second factor in the integrand of
(22) is a linear polynomial so we may express it in the form
ar-1
oxp-1

(TN +uT) —S) = AB - X).
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Substituting this into (22), using the definition gfand evaluating the resulting integrals gives

1 1
B:J xwwmx/] Y(X)dX,
-1 1

so that

p+1

B— .
2p+1

Thus we have a zero & = B which, through (20), leads t6 = L — phy/(2p + 1) as required.
The proof of part (ii) of the theorem depends on the observation that the reBickialpolynomial
of degreep that, by (10), is orthogonal to all polynomials of degpeehich vanish ak = x, (because
of this last condition, there is one less degree of freedom than would be required to ensRre¢hat
identically zero). Consequentlfg must be a multiple of the Radau polynomial of degpse

R(x, ) = a®r,(x), xe€(x,L),

for some functioma(t), and therefore (18) must hold. O

It follows from Theorem 1 that the ‘no BC’ finite element equations provide an approximation to
the non-standard problem consisting of (1) on the intefval x<¢, a Dirichlet condition ak = 0
and the boundary condition

L

for some¢ = £(h, t) € (%, L). Whenu andSare sufficiently smooth, the differential equation may be
used to simplify the boundary condition at the outflow and this leads to the initial boundary value
problem (IBVP)

T+ uT, =¢T, +S, 0<x<¢
TO,t)=0, t>0,
aPHIT

Discrete versions of this outflow boundary condition have been discussed in the finite difference
literature on hyperbolic problemsge = 0)>'° and also in the context of the Navier—Stokes
equations>

We shall demonstrate through numerical experiments in Section 4 that the solutions of the ‘no BC’
finite element method do indeed converge to those of problem (23), so we may interpret the solutions
of (23) as describing the properties of equations (9). We therefore need to quantify how far the
solutions of (23) lie from those to the original problem posedoeax < oco. We shall consider this
issue in the next subsection.

(23)

3.1. Stationary problems
Our aim is to determine the difference between the solution to the problem

uT, =eTyy +S, 0 <Xx< oo,
F*13T(0)=0, (24)
T(X) — constant, X — oo,
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denoted byT >, and that of

uTX:8Txx+Sy O<X<é’
T(0) =0,

T

5 (9=0

which we denote byT¢. If u is constant, then the general solution i, = ¢T,, 4+ S satisfying
T(0) =0 is given by

< (25)

X X
T(X) = AE™/* — 1) + %J S(s)ds — %J eux=9)/25(s)ds (26)
0 0

for any constani.
If g-ux/e jox S(x)ds — 0 asx — oo, then T(x) —constant if the constam is chosen such that
A=A, where

A, = J e /%S (s)ds.
This together with (26) defineb>.

The differencee = T™ — T¢ satisfies the homogeneous differential equatiaa” + ue’ = 0 with
e(0) = 0 andd*e/dxk = d"T>/dxk atx = ¢. Consequently,

o= () %%

for 0 < x < &. It is readily shown that

u—x)/e _ eué/z;)

d“Te° > d“
e & = J Qu(E—s)/e o (s)ds

¢

These results lead to the following lemma.

Lemma 1

If uis constant an&and its firstk — 1 derivatives are continuous and bounded @), then the
solutions to problems?> and.#* differ by

) K—1 [o° k-1 3 3
00 - Té00 = - (2 L el (s 4 Qs(e M e @)

for 0 < x < & Thus

dkl

P (28)

. 1 /e\k
00 S <—(-
max 700 =TI < 5 ) max

0<x

and the maximum of the left-hand side is achieved at &.
Remarks
1. The smoothness requirements on the source t8rmmay be weakened (except in the

neighbourhood of = £) at the expense of introducing additional exponentially small terms into
the right sides of (27) and (28).
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2. The requirement ofi being constant may be relaxed (subjectut®) > 0) at the expense of
introducing more complex integrating factors. The results given are valid onlyif, so that
some element of convection is essential in the problem.

3. The most significant conclusion is that the higher the order of derivative boundary condition
imposed ak = &, the closer the solutioriB™ andT¢ lie to each other. If the no-flux condition
(2) is imposed, we havé = L, k = 1 and a difference of/(¢), but with linear(k =p + 1 = 2)
and quadrati¢k = p + 1 = 3) elements in the ‘no BC’ formulation we get differences(@t?)
and ((¢%) respectively (the first of these may be deduced as a special case of the results of
Loh&ac"). Moreover, the last factor on the right of (27) represents a term that is exponentially
small outside a boundary layer of widéh(c) atx = &; any differences are therefore confined to
this layer.

4. If the time-dependent problem (23) achieves a steady state-aso, then the results of
Lemma 1 also hold in that case for large times.

4. NUMERICAL RESULTS

We present three examples designed to confirm the results of the preceding sections.

Example 1. Steady problem
We chooseau = 1 and consider the problesr> with

_Jsin(x), 0<x<m,
S(X)_{O, T <X < 00.

The solutionsT > are shown irFigure 1for ¢ = 0-1 (broken line) and: = 0-01 (full line).

We solve the problem on the truncated domain wita 1 using both the no-flux formulation (8)
and the ‘no BC’ formulation (9) with linear and quadratic elements. The choicesaoflu may be
compensated for by rescaling e andS. In all cases we use= 1, 0.1, 0-01, 0.-001 and a uniform
grid in space witth =271, j = 2,3, ..., 10. The computations were carried out in Matlab on a Sun
SPARCstation LX.

The solutions for linear elements with=1/32 are shown irFigure 2 (a) e=1, (b) ¢=0-1, (c)
&£¢=0-01 and (d¥ =0-001. The full line denotes the solutidi?°, the crosses denote the solution using
‘no BC’ atx = 1 and the circles denote the solution using the no-flux boundary condition (2). The ‘no
BC’ condition is seen to be effective even at very large values of the diffusion coefficient and is
generally superior to the no-flux condition.

0 1 2 3 4 5

Figure 1. SolutionT* to Example 1 withe = 0-1 (broken line) and: = 0-01 (full line). The vertical dotted line shows the
location of the fictitious boundary
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(a)

0.5 1

(©
0.5

0.4

0.3

0.2

0.1

Odaee il B i
0 0.5 1 0 0.5 1
X X

Figure 2.7 (full line), Th,,, (circles) andT!, . (crosses) for Example 1 with =1/32 and (a)e =1, (b) ¢ =01,
(©) & = 0-01, (d) ¢ = 0-001

Each part ofFigure 3shows a log—log plot of the difference between a reference solution and a
computed solution (evaluated at= 1 — h) as a function oh for ¢ = 1 (crosses)¢ = 0-1 (circles),
¢ = 0-01 (asterisks) and = 0-001 (full line). In Figure 3(a) we show > —T" . . whereT is
determined using equations (8). It is clear thathas> 0 the difference is proportional te, in
accordance with Lemma 1 witk = 1. Figure 3(b) shows the difference® — T/, = between the
exact solution to the problem on the unbounded domain and that produced by the linear ‘no BC’
formulation. For small values afthe difference behaves &gh?) but asymptotes as— 0 to a value
proportional to((¢?), again in accordance with Lemma 1, this time whth=p + 1 = 2.

Figures 3(c) and 3(d) compare the difference betw&Bp. and T¢, where, from Theorem 1,
¢ =1-h/3. In Figure 3(c) the difference tends to zero whthbut the rate of convergence, although
close to two for larger values df, ultimately diminishes ta’(h). It is seen in Theorem 1 that the
precise location of¢ is only known whenS has the same degree as the underlying FE space.

Accordingly, we also compute the ‘no BC’ FEM witBreplaced by its interpolarg" defined by

N

$"00 = 2 S()d;(x).

j=0

The resulting differencd ¢ — Trﬁ‘obc is shown in Figure 3(d) and is seen to converge optimally at
O(h?).

The results of exactly analogous computations using quadratic finite elements are sliogurén
4. They are again in agreement with the results of Theorem 1 (with2, ¢ = 1 — 2h/5) and Lemma
lwithk=p+1=3.
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Figure 3. Example 1 with linear elements: T — Th g (0) T —Th, ., (©)T¢ — TR, and (d)T¢ — T\, (with source term

interpolated) a$ varies. Key: crosses,= 1; circles,¢ = 0-1; asterisksg = 0-01;full line, ¢ = 0-001
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Figure 4. As for Figure 3 but using quadratic elements

10
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Example 2. Unsteady problem

This example is designed to test the assertion that the solutions of the ‘no BC’' equations (9)
converge to those of the IBVP (23) s~ 0. We choose initial data so as to give an exact solution of
equations (23) with. =1, u=1 andS = 0. The initial data are dependent on the degpeehe
locationé = 1 — ph/(2p + 1) and, consequently, dm The exact solution is chosen as

2 L SINDIX) g gz
T(x. 1) = Ze&-1/2 _1) iRt Y -t e, 29

= Y ey @)
which satisfie§ (0,t) = 0, T(1, 0) = 0 and also the boundary conditi@f*+'T /axP*! = 0 atx = ¢ if
y, andy, are roots of

(1 —4e%%)sin(yé) +4eycos(y8) =0, ¢=1-h/3, p=1, (30)
(1 — 126292y sin(yé) + 2ey(3 — 4e®y?)cos(yé) =0, ¢=1-2h/5, p=2. (31)

We choose the two smallest positive roots of these equations. The solutions are shoguréns
forp=1,h =1/64 andes = 0-1 (left) ande = 0-1 (right). The presence of a boundary layexat 1
is evident fore = 0-01. The solutions have a qualitatively similar form for= 2.

The solution (29) defines initial data

2 . sin(yx
o0 = 2oz 3 (gt SR
€ =12 sin(y;)
for 0 < x < 1, and by extending this to be zero outside the interval, we may construct a solution of (1)
on the entire real line by

1

Jiawa),
V(4net) Jo

whene is small, T*(0, t) is exponentially small and so this expression is sufficiently close to the
solution that satisfie$ (0, t) = 0.

In the numerical results that we present, the time integration of equations (9) has been
accomplished using a Matlab code based on variable order, variable step, backward differentiation
formulae and controls the level of local errors in time to a user-specified tolerance. We have used a
tolerance of 107 in our computations.

Figure 6shows the solutions using linear elements ate with h = 1/64 and (a)e = 0-1 and (b)

& = 0-01 (only the solution in the intervad-75 < x < 1 is shown). The circles denote the solution
Th fuc the crosses denofdl, , the full line denoted given by (29) and the dotted line denof®s.
There is very close agreement betwegh,. and T in both cases, whereas there is a notable
discrepancy betweef" ., and bothT and T*.

oflux

T, t) = To(s)e~ s /4etgg,

Figure 5. Example 2: Exact solutions of IBVP (23) wjth=1,h = 1/64 ande = 0.1 (left) ande = 0-01 (right)
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(a) (b)
1
0.8
0.6
0.4
0.2
-oo-ae? &
0 0.5 1 0.8 0.9 1
X X

Figure 6. Example 2: solutions using linear elementis-at: with h + 1/64 and (a)e = 0-1 and (b)e = 0-01 (only solution in

interval 0-75 < x < 1 is shown). Key; circlesT, crossesT" . : full line, T; dotted line, T>

h .
noflux> nobc?

The corresponding results for quadratic elements are shoviAigure 7 The conclusions to be
drawn are the same as for linear elements.

Quantitative measures of the differendes — Th . . T — TN —andT — T, as functions oh
are presented iRigure 8(Linear) andrFigure 9(quadratic). Results are given foe= 0-1 (circles) and
¢ = 0-01 (crosses). It is seen that boti® — T = (Figures 8(a) and 9(a)) arit™ — TN, . (Figures

8(b) and 9(b) behave &4¢) ash — 0 whereasl — Tr?obc (Figure 8(c) and 9(c)) behaves &¢h?) for
both linear and quadratic elements, suggesting that the solutions of the ‘no BC’ FE equations do
indeed converge to those of (23).

This example does not properly reflect the ability of the various FE methods to approXifiate
because of the boundary layer in the neighbourhood of1. We therefore include one further

example which does not contain any such layers.

Example 3. Convection of a Gaussian

We require a smooth exact solutidri® on 0 < X < oo and this is taken to be

T, t) = —(x=Xg—1)? /4e(t+t,)

1
(@re(t + 1))
with t; = 0-1 and two choices of andx,. Fore = 0-1 we takex, = 0-5 and integrate ovel <t < 1,
whereas for = 0-01 we takex, = 0-75 and integrate oved < t < 0-4. These have been chosen so
that the major features of the solution are convected out of the domain in the specified time intervals.
The solutions are shown iRigure 10with ¢ = 0-1 (left) ande = 0-01 (right).

(a) (b)

0.9 1
X X

Figure 7. As for Figure 6 but using quadratic elements
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10 10 10°
-1 ©
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107° 107 107" 107 107 107 107 107 107

Figure 8. Example 2 with linear elements: T} — T/ g, (0) T — TR, and (c)T — Th,. againsth for ¢ = 0-1 (crosses) and

¢ = 0.01 (circles)

(a) (b) ()
10’ 10’ 107" o
+ o+ S/
10° 10
+ o+ o+
10° + oo
(o]
10™" °© 107
© 00 o0 g ©
-1 -2 -4
107'L - 10 10
107 107 107" 107 1072 107" 107 1072 107"

Figure 9. As for Figure 8 but using quadratic elements

The grids have used = 1/32 for linear elements antl = 1/16 for quadratic elements (so that
both systems have the same number of degrees of freedom). Reducing the lsizekafth cases
leads to virtually identical results (to graphical accuracy), since the dominant factor in the error is the
value ofe.

The solutions at the outflow boundaxy= 1 for linear elements are shown Figure 11a) for
¢=0-1 and Figure 11(b) fore = 0-01. Th circles, crosses and full line denote the solutions
TN fwxe Tiope @nd T respectively. For both values ethe ‘no BC’ formulation is clearly superior to
the no-flux boundary conditions.

The corresponding results for quadratic elements are showgime 12 The magnitude of the
errors inTh is comparable with that for linear elements in each case. The ‘no BC’ formulation

noflux
shows a marginal improvement over the use of linear elements.

Figure 10. Example 3: exact solutions with= 0-1 (left) ande = 0-01 (right)
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Figure 11. Example 3: solutions using linear element at1 with h = 1/32 and (a): = 0-1 and (b)¢ = 0-01. Key: circles,

h . h . .
Th ux CrossesTh - full line, T

5. AN EQUIVALENT DIRICHLET-NEUMANN PROBLEM

It was shown in Section 3 that the ‘no BC'’ finite element equations (9) approximate the IBVP (23) in
which there features a boundary condition involving @he- 1)st derivative ofT. This leads to a non-
standard problem for which no theory has been developed regarding either convergence or, in steady
cases, whether the linear equations they generate are non-singular. We shall show that this difficulty
may be partially circumvented by relating the ‘no BC’ finite element equations to the standard
Galerkin FE approximation of a more standard problem. The process will be sketched for FE spaces
of arbitrary degree and details given for the casps=1 and 2.

We begin with some preliminary results that will enable us to determine a combination of test
functions to replacep,y in (9) so that the ‘no BC' equations may be reorganized to resemble those
for a Dirichlet—Neumann problem. For eaphet ¥ denote a polynomial of degreg Zwhich we
shall specify below) and define

dP
000 =2 0. @)

Then, if VP =3, ™ V/'¢:(x) denotes an arbitrary finite element function, it may be shown by
integrating by parts that

L

L -1 L j\7h —j+1 —j
Pt P LoV op Ity Py
_pyh h — h _ Y .

th Vot = U Vs x=x jgz D5 <'s ox P P‘j)

X=X,

Figure 12. As for Figure 11 but using quadratic elements
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We now impose th@p + 1 interpolation conditions

dwy .
dXJ(X|):O7 Jzo’la“"pa
dP-iy : e\l
_(_ J+1_ s
L=V j=12...p

which uniquely definel(x), and we obtain
L
J Y(—eVi 4+ uvhdx = eV(L). (33)
X

Moreover, since)(x) is a polynomial of degrep on (x;, L) with y/(x;) = 0, there are coefficients;}
such that

p
Y(x) = X; a0, (%),
j=

a linear combination of the FE basis functidigg} whose support is restricted to the outflow element
(%, L).
The essential features are contained in the steady case and so we set all time derivatives to zero—
we will subsequently return to the unsteady case. Multiplyingthequation of (10) by;, summing
overj and adding the result to the last equation of (10), we obtain, gineé = pN,

L
J (dpn + W)(UT, — eTpy — S)dx = 0.
X
Reorganizing this and using (33) with" = T", we find
L L
J PN (UTY — £Tf — S)dx + eT(L) = J YSds.
S| X
We now integrate the second-derivative term by parts andpysé.) = 1 to give
L L
J (donUTY + ey, T — dpnS)dx = J YSds. (34)
X X

Since¢j(L) =0,j=1,2,...,pN — 1, we have now shown that the steady ‘no BC’ finite element
equations (9) are equivalent to

(6}, UT) + (), T = (¢;,9), j=1,2,...,pN — 1,
L

(¢,-,uTx“)+s(¢,-x,TX“)=(¢,—,S)+J ¥Sds, j=pN.

This is the standard Galerkin FE approximation of the Dirichlet—-Neumann problem

—eT,+UuT, =S, O0<x<lL,
T(0) =0, (35)
uTy(L) = o,
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where
L
a:EJ ¥Sds
& Jx,

clearly depends oh.
For linear elements it is readily shown that= 2&(x — x,)/uh? and, by Taylor expansions,

o = S(L) — (hy/3)S,(L) + O(h?)
= S(L — hy/3) + 0(h?),

which is independent of. For quadratic elements we find
o X=xfe fox=x &2 X=X
Voo =6 hy |:UhN (2 hy 1) - uzhg <3 hy 4)}

x=S(L) + SSX(L) + O(h? + ¢h),

and

whereas for finite elements of degrpdét may be shown that

_ 2 ()08 p -1 .. ep-t
%= S(L)+S,(L) + +(u) w5 (L O+ P P, (36)

In order to relate the implied boundary conditiof, = « to the solution of the original problem on
the semi-infinite real line, we note that the exact solufih satisfies the differential equation

TX - GTXX = a S
on 0 < x < oo and multiplying both sides by the differential operator

1
1+£3+...+(E)P—1i

u ax u oxp-1’
we find that
. -1 . p+1lT00
(L) = L (B)pr 278 £\PoPTT
UTEL) = SO+ () o O +u(c) S O (37)
provided thatSis sufficiently smooth. Thus, in the limit — 0,

P p+lT 00
X p+1

uT(L) = o+ u(é) L),

so that the BQuT,(L) = « is equivalent, in this limit, to the B@P™T /axP*+! = 0 used in (23) (see
also (4) withj = p +1).
It now follows that the difference = T> — T, whereT is a solution of (35), satisfies
—egy +Ue, =0, O<x<L
e(0) =0,

uey (L) =9,

whered = O((e + h)?). By the same reasoning that led to Lemma 1, we may conclude that
T® —T = O(e(e + h)P).
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The standard Galerkin method will, subject to smoothness of the data, generate a numerical solution
TN that is within ©(hPt1) of T. Consequently,

T® — TN = O(g(e + h)P + hPHY, (38)

The error is therefor@(hP*+1) whene « h and O(¢P+1) whenh « ¢, which is exactly the behaviour
found in Example 1 (see Figures 3 and 4).
The same construction applies to unsteady problems and may be shown to lead to the IBVP

Ti+uTx=¢T,y+S, O0<x<lL,
T(@O,t) =0,
uT,(L,t) = o,

where
u L
o= —J W(S — Ty)ds
& Jx,

andy retains its earlier definition. To reduce the amount of detail, we assum& ihat polynomial
of degreep in x (or that it is interpolated into the finite element basis) and discuss the gasésand
2.

Forp =1 it may be shown that the BQT,(L, t) = o may be written as

Tt +UTx =35 _% hN(Sx _Txt)

at x =L, so that ash — 0 we obtain the conditiorT, + uT, =S (cf (3)), which is equivalent to
settingT,, (L, t) = 0.
For p = 2 the corresponding BC is

&
Tt + UTx =S - G(Sx - Txt) - Tl()hﬁ (Sxx - Txxt)~ (39)
By differentiating (1) and eliminating,,, it may be shown thal > satisfies

2
TE+UTE =S — =5, — T —u(2) T
and we see that in the limit — 0 the implied BC (39) for quadratic elements is equivalent to setting
Tou(L, ) = 0.

A similar approach may be adopted for> 2 to show that the ‘no BC’ finite element equations
converge to the Galerkin finite element approximation of (10oa x < L with the ‘extrapolation’
boundary conditiordP*1T /oxP+t =0 atx = L.

We believe that the arguments used in this section may be extended to higher dimensions and this
will be reported on in a future paper.
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